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The method of averaging is generalized to the case of the nonstationary equation 
of radiation transfer taking into account scattering. Results are presented for 
calculations of radiative cooling of a spherical plasma volume. 

In high-temperature gasdynamic problems with temperatures on the order of several kilo- 
electron-volts, the radiation energy becomes comparable to the energy in matter. In this 
case, energy transfer must be described by a nonstationary equation [i]. Methods for solving 
nonstationary transfer equations were examined in [2, 3] for the case of spherical symmetry 
in the approximation of a gray gas without taking into account scattering with the simplest 
angular dependence of the radiation intensity. Methods for solving such an equation, taking 
into account both angular as well as the frequency dependence of the radiation intensity 
have been developed only for the stationary transfer equation without taking into account 
scattering [4-9]. It is of interest to solve the more general problem, which is free of the 
limitations indicated. 

In solving the problem of radiative cooling of a spherical plasma volume expanding into 
a vacuum, we propose a generalization of I. V. Nemchinov's method of averaging the transfer 
equation [7] to the case of the nonstationary radiative transfer equation, for a medium with 
both absorption and scattering. (This method was successfully applied in a number of works 
[10-12] to problems of low-temperature radiative gasdynamics taking into account continuum 
and selective absorption.) The system of equations of radiative gasdynamics taking into 
account radiation energy and pressure is solved with the help of a completely conservative 
difference scheme. A number of variants of the problem are calculated with the use of both 
the approximation of a totally ionized gas and with tabulated values of the thermodynamic 
and optical gas parameters. 

i. The equation of radiative transfer in an absorbing and scattering medium in spheri- 
cal coordinates is given by 
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Here and in what follows, having in view a plasma with temperatures on the order of kilo- 
volts, we will take into account only classical scattering of photons by electrons, for 
which the scattering indicatrix [13] is 

3 p (~, ~') = ~ [3--  ~ + ( 3 ~ - -  1) ~'~1. (2) 

Following [7], we set: 
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TABLE i. Initial Data and Parameters of the 
Problem for Variants Computed with Thermodynamic 
and Optical Properties of the Plasma Given in 
Different Forms 

1 Parameters 
(table) 

Ro, em 1,0 
To, keV 2,0 
Eo, MJ 2370 
Euo/Eo 0,189 
)% 0,517 
~o 194,9 
~- 951,7 
o~ 0,649 

Number of variant 
4 

bremsstrah- 
:lung) 

2 3 
~remss~ah- (table) 
lung) 

1,0 -0,1 
2,0 2,0 

1870 2,05 
0,098 0,062 
0,517 0,0517 

194,9 194,9 
951,7 951,7 

0,805 0,720 

0,1 
2,0 
1,72 

0,020 
0,0517 

194,9 
951,7 

0,780 

8 

1 0 
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0 - - i  

2 F+ • S + . 6 S 7 ;  U ~ - - - - - - (  8 .6F~-); g~----T(Y~)~,=o/(F~ +FT-); 8 
g 

1 0 
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0 - - 1  

(3) 

Here, ge• is the sphericity factor defined, in contrast to [7], in such a way that it is 
possible to transform to the two-flux approximation [2]. 

In order to obtain the angle-averaged spectral transfer equation, it is necessary to 
integrate Eq. (i) taking into account (2) and (3) with respect to ~ over the limits --i to 
0 and 0 to i. In order to perform the frequency average, we separate the entire spectral 
interval into M frequency groups and, following [7], we introduce the average group quanti- 
ties: 

8 2 $-~ 
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Averaging (I) with respect to angles and integrating the equation obtained with respect 
to frequency over the ranges of the i-th group, using (4), and introducing the distortion 
function for the spectrum qi •177 p, we write the multigroup system of the radiative 
transfer equations: 

xs (P~-- FT). O) 
c Ot ~ r z Or -6 -7-- 

System (5) is exact in the sense that if at each point the true values of the averaged 
coefficients ci • gi • and qi • are used (they can be obtained by solving the initial equa- 
tion (i) and averaging according to the equations indicated above), then we obtain from Eqs. 
(5) the same values of Fi• obtained by solving the initial equation (i) with subsequent 
integration over angles and frequency. The advantage of the given method consists of the 
fact that, as experience shows, the averaging procedure can be carried out over a quite 
large number of time steps, retaining the values of the averaged coefficients in the 
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Fig. i. Plasma temperature T, the dimen- 
sionless plasma density 0, the energy 
flux density of the radiation S' for 
variant 3 as a function of Y at different 
times: I) S'=~oS; II) T, keV~ III) p; 
i) tl =0 sec; 2) t2 =10 -I~ sec; 3) t3 = 
10 -9 sec. 

intervals between the averaged values with respect to particular physical variables (mass, 
optical thickness, temperature, etc.), depending on the type of problem being solved. It 
may be assumed that since the averaged coefficients are integral functionals of Je, varying 
weakly with a change in the magnitude of Je, and mainly determined by the optical thickness 
of the region, in order to obtain the averaged coefficients, it is possible to use the 
stationary analog of Eq. (I), rather than Eq. (I) itself. As computational experience has 
shown, this is justified in view of the large difference in the scales of the characteristic 
times over which the radiation intensity and averaged coefficients vary. 

2. As an example of the use of the method described above, we will examine the prob- 
lem of radiative cooling of a spherical volume of dense plasma expanding into a vacuum with 
initial density 0o, radius Ro, and temperature To (on the order of several kiloelectron- 
volts). 

We write the total system of radiation--gasdynamic equations for the problem formulated 

__Ou + r2 0 Or ; v - -  1 Or ~ , 

Ot ~ [p + & l = ~  u -  Ot 3 0 m  

OE 0 u" 
0---/-- + -~m [(p + &) ur~ + r~s] = 0; E = ~ + y + vU; 

as follows: 
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2 = 1 2 M 
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The boundary and initial conditions are: 

m=0:F +=FF; J~(F)=J~(--F)r~>o; u=0; 
m = M o / 4 ~  : F 7  = 0; g~ (F)J~<o = O; (7) 

t = 0 : u - - - - 0 ;  P=Po; v--1/po; T = T o ;  F~==FF~;+ 
+ 

F~t are obtained from a solution of the system of stationary transfer equations, corres- 
ponding to (5). 

Using as scale factors the quantities T*=To; r,=Ro; v,=i/9o; p,; e, 1=T,; Fe,=oT~; 
3 2 m,=por,; u,=~; eT,=U,, and t,=r,/u,, we put the system of equations (6) and (7) into 

dimensionless form, and in so doing, the problem will be characterized by the following 
parameters : 
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Fig. 2. Dependence on time 
t (sec) of the radiation 
energy flux density S (MJ/ 

2 m .sec) and ~av (keV) at 
the plasma boundary for all 
variants: I) S; II) ~av- 

eT~. ~ _  c . 2S=• Z,o=0.39772 4 Po. (8) ~o  - -  p , u ,  ' u ,  ' 

3. Several types of methods exist for solving the stationary transfer equation, cor- 
responding to (i). We used one of the variants of the Sn method. This choice stems from 
the fact that, first, the method is simply realized and, second, it is comparatively easy 
to take into account scattering in this case. Due to the cumbersomeness of the difference 
scheme, it is not given here. Its form is close to the scheme presented in [14]. In order 
to approximate the scattering integral, we used Gaussian quadrature equations for the inter- 
vals (--i, --0) and (0,--I). 

In order to solve the transfer equations (5), we will use the absolutely stable, impli- 
cit, two-point iteration scheme with second-order accuracy in time and space, developed 
previously [2]. We note that, as shown in [15], for transfer equations, second-order dif- 
ference schemes lead to radiative thermal conductivity in the limit of large optical thick- 
nesses. This can also be demonstrated for the scheme used here. 

Gaussian quadrature equations were used for finding the averaged coefficients in 
integrating with respect to angle. They were used also in integrating with respect to fre- 
quency in the region where the absorption coefficient has a smooth behavior. Trapezoidal 
rules were used for integrating over spectral lines, as well as near jumps in the absorption 
coefficient. 

In order to write down the equations of gasdynamics in difference form, we will use 
the well-known "cross" scheme [16]. (The mass coordinate is divided into N -- 1 intervals 
with step hj+i/2 =mj+1 -- mj) : 

~n+l n Dn+t/2 - ~n+I/2 ~ \ n + l / 2 1  2T . 
i+~ = u i + ~ - -  ~i+~ [(p - ~  / ~ [ + 3 / 2  -- (P + / - ~ ] + 1 / 2  ] h]+3/2 -~ h [ + l / 2  , 

�9 s+ l  ~OOPi+i/2~Ui+!/2, ~Ui+1/2 < 0 . 
~ ] + I / 2  = 0 , ~ U ] + l / 2  ~ 0 ' 

s+ l  ~ n + l  D n + l / 2  r ~ n + l / 2  n + I / 2 ~  "2T . 
U]+I = Ui+l -- '~i+1 t ~ / + 3 / 2  - - W / + l / 2  I 

hi+3/2 + hi+I/2 

s + l  n �9 n + I / 2  ,s+l  ~t ; / + 1 - -  . 
t f+ i  ri+l-~- u]+l % vi+l/2 : hi+l/2 , 

ES+t E n - T ]+1/2  = ]+1 /2  -- {[(P  + P~ U~ + ~or2S lT~ t /2 -  [(p @ p~ uR + ~oF2S]7 +1/2} -; 
hi+u2 

, .  2 ,s+ 1 s+ l  o s + l  . 
s+l E s+l - -  0.25 ttu )i+1 + (u2)~+ll--Vovi+~/2 i+t /2 ,  8ri+ll2 = i+1/2 

Here, 

. ~ = f . + l - - t - ;  / 7 = p + c o ;  P = P ( e T ,  V). 

Fj+I/2 = 0.5 (Fj+I  + Fj) ;  ff~+l/2 = 0.5 (~+1  _]_ Tn); 

~ Fi+312hi+l12 -+- ffi+l12hi+812 . 
F]+I = h]+312 27" h]+l12 "' 

(9) 
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Fig. 3. Spectral characteristics of the outgoing radiation: 
a, b, and c) dependence on e (keV); i) ~(c); 2) ~T(E); I) 
variant 3; II) variant 4~ a) tl =0 sec, t2 =0 sec; b) tl = 
10 -11 sec, t2 =2.08"10 -11 sec, c) tl =9.88"10 -11 sec, t2 = 

1.19"10 -I~ sec); d and e illustrate the dependence on e; i) 
W(s); 2) ~B(S) for variants 1 and 3; d) tl =0 sec, t2= 
1.46-10 -I~ sec, t3 =8.71"10 -I~ sec; e) tl =0 sec, t2 =10 -11 
sec, t3 =9.88.10 -11 sec). 

R~+j/2 = 1 [(r2y+l + r~+lr. + (r2).l; (r2)~+1/2= 0,5 [ (r~+  1 + (rZ)~l; 
3 

={p,p}; E={u, R, r, S, U}; F={u, R, r, S, U, p, ~}. 

The system of equations written above is implicit and has second-order accuracy both in 
space and time. In order to solve it, an iteration procedure is used. As in [17], it can 
be shown that in solving transfer equations according to second-order schemes, the system 
of difference equations written down will be completely conservative. 

We will now list the successive stages in the solution of the entire problem. Assume 
that at some time total averaging has been carried out, i.e. the true values of the averaged 
coefficients ci• , gi • Hi • and di • have been found. Then, for some number of time steps, 
the total problem, in which the averaged coefficients are retained at the mass points, is 
solved. At each time step, an iteration procedure is used until the flux Fir converges 
with relative error soo. After some number of time steps, the averaging procedure is 
repeated. 

4. The calculations were carried out for radiative cooling of an aluminum plasma 
sphere, expanding into a vacuum, with initial temperature To = 2 keV and initial radii Ro = 
0.i cm and Ro = 1 cm. For each initial size, the calculation was carried out i) in the 
approximation of total ionization of the plasma with bremsstrahlung absorption coefficients 
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Fig. 4. Dependence on time t(sec) of i) ET, 2) 
EK, and 3) ER, referred to Eo, and 4) ~ for 
variants 1 and 2: I is Variant 1 and II is 
variant 2. 

(variants 2, 4); and, 2) with tabulated equation of state and absorption coefficients, 
taking into account spectral lines [18] (variance 1 and 3). 

The calculations for all variants were carried out with seven spectral groups, deter- 
mined by the following boundaries: 0.1388-0.2512-1.259-2.073-5.012-10.0-25.12-39.81 keV. 
The frequency average was carried out for 56 frequencies in the case of bremsstrahlung 
absorption coefficients and for 200 frequencies in the case of tabulated absorption coef- 
ficients, which permitted taking into account such properties of the actual spectrum as 
jumps in the absorption coefficient and spectral lines. In averaging over the angle, four 
angles were chosen in each hemisphere. 

Let us examine the results of the computations. Table 1 shows the basic characteris- 
tics of the variants chosen. 

Calculating the variants with different initial radii permitted clarifying the depen- 
dence of the process of radiative cooling on the initial optical thickness. Comparison of 
the bremsstrahlungvariant and the variant using real absorption coefficients showed how 
much the computational results differ both qualitatively and quantitatively. Let us first 
consider the effect of gasdynamic parameters on the plasma cooling process. It is evident 
from Fig. 1 that up to the time t ~10 -I~ sec for Ro =0.I cm and t~10 -9 sec for Ro =I.0 cm, 
the process of radiative cooling with an almost stationary plasma predominates. At later 
times, intense expansion leads to strong rarefaction of the gas mass near the boundary, 
radiative cooling slows down, and the plasma temperature equalizes. 

We will now examine the change in the spectral characteristics of the radiation with 
time. Figure 2 shows the time dependence of the energy fluxes S at the plasma boundary and 
the photon energies eav averaged over the spectrum for all variants: 

i ~U~de 

i U~d~ 
0 

The b r i g h t n e s s  T b and e f f e c t i v e  Tef  f t e m p e r a t u r e s  c an  be  c o m p a r e d :  Tb = ( S / e )  1 / 4 ,  T e f f  = e a v /  
3 . 8 3 2 .  

I t  i s  e v i d e n t  f r o m  F i g .  2 t h a t  t h e  q u a l i t a t i v e  b e h a v i o r  o f  t h e  f l u x e s  i n  v a r i a n t s  1 and 
2 a n d ,  c o r r e s p o n d i n g l y ,  i n  v a r i a n t s  3 and 4 i s  more  u n i f o r m  t h a n  t h e  b e h a v i o r  o f  t h e  m a g n i -  
tudes of ~av, reflecting the spectral characteristics of the radiation. 

Figure 3 illustrates the functions characterizing the spectral composition of the out- 
going radiation: 

; % ( ~ )  - 

f o r  a number  o f  t i m e s  i n  v a r i a n t s  3 and 4 .  The q u a l i t a t i v e  b e h a v i o r  o f  t h e s e  q u a n t i t i e s  
in variants 1 and 2 is the same (with the exception of the time scale of the evolution of 

911 



the spectrum), so that they are not presented. The role of lines in the formation of the 
spectrum can be seen from Fig. 3, and it is also possible to get an idea of the degree of 
departure from equilibrium in the outgoing radiation. The region of the spectrum, in which 
the lines play a noticeable role, is shown in greater detail in Fig. 3d for variants 1 and 
3, and in e for variant 3; here, @B is the equilibrium spectrum, corresponding to the boun- 
dary temperature of the plasma. 

From the behavior of the basic integral energy characteristics of the problem (Fig. 
4), as well as the magnitudes of the fluxes S and Sav (Fig. 2), the considerable qualitative 
and quantitative difference between the computational results for the bremsstrahlung variant 
and the variant using the real absorption coefficients is evident. We note that for variants 
3 and 4 the corresponding curves in Fig. 4 are shifted to the left approximately by an order 
of magnitude in time. 

The results presented show the basic laws governing the process of radiative cooling 
of a plasma cluster expanding into a vacuum. We also note that the results of calculations 
of similar variants of the problem for ~sRo~l that do not take into account scattering 
(as in [2]), which are not presented here, reveal the considerable influence of thisprocess 
on the rate of deexcitation and on the resulting values of the quantity ~. 

NOTATION 

J, radiation intensity increased by a factor of ~ in the calculation for a unit inter- 
val of photon energy; r, Euler coordinate; c, velocity of light; t, time; @, angle of inter- 
section of the ray with the radius vector;~, spectral absorption coefficient, corrected 
for induced emission; e, photon energy; ~s, scattering coefficient; p(~, ~'), scattering 
indicatrix; o =1.0302"103 MW/eV~'m 2, Stefan--Boltzmann constant; T, temperature; F • and F, 
average single-sided and total radiation intensities, increased by a factor of ~; c • and d • 
average single-sided cosines and squares of cosines in the hemispheres; S • and S, single- 
sided and total flux densities of the radiation energy; U, radiation energy density; sl and 
c2, lower and upper boundaries of the i-th spectral group; u, mass velocity; m=fpr2dr, 
mass coordinate; p, pressure; p, density; v, specific volume; E, total specific energy; ST, 
specific internal energy; PR, radiation pressure; ET, EK, and ER, thermal and kinetic 

t 
energies, and the radiation energy; a=4~Sr~Sdt/Eo , fraction of energy radiated out; rb, 

0 
plasma boundary. The indices are as follows: 0, initial values of quantities; *, character- 
istic dimensional quantity; g, photon energy; i, index of the spectral group; j, mass cell 
in the grid; n, number of the time step; s, iteration index; (--), symbol indicating the 
radiation fluxes and the Euler coordinate written in dimensionless form. 
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SOME EXACT SOLUTIONS TO EQUATIONS OF 

TRANSIENT FLOW WITH SUCTION FOR A VISCOUS FLUID 

L. F. Kozlov and Yu. A. Ptukha UDC 532.526 

Self-adjoint asymptotic solutions to the equations of flow are constructed for a 
viscous fluid near a permeable plane boundary. 

We consider the problem of transient plane flow of an incompressible power-law non- 
Newtonian fluid near an infinitely large permeable wall in the plane of the x axis (Pig. i). 
The fluid is uniformly sucked through the wall at a velocity Vo(t). At the instant of time 
t = 0 the wall is suddenly set in motion at a velocity Uo(t) in the direction of the x axis 
[i]. 

We will consider only asymptotic solution, i.e., assume that all derivatives are d/dxs 
0. At infinity we let the velocity be not zero, as is usually done, but finite [2]. Under 
these assumptions, the equations of motion for a power-law fluid become 

av__.~ § Vo (t) - - -  

at ay p \ ay ] ay 2 

dVo 1 ap 
dt p c3y 

(i) 

(2) 

with the boundary conditions for the components of velocity and pressure 

vl=v2=O at t=O, y>O, (3) 

v~ = Uo (t), v~ = Vo (t), p = po (t) at V = O, t > O. ( 4 )  

We will henceforth deal only with the case In I < i. From Eq. (2) and the boundary condition 
(4) we determine the pressure 
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